Higher Order Linear Differential
Equations
Math 240
Linear DE
Linear differential operators
Familiar stuff Example

Higher Order Linear Differential Equations

Math 240 - Calculus III

Summer 2015, Session II

Tuesday, July 28, 2015
$\substack{\text { Higher Order } \\ \text { Lifinear } \\ \text { Dferential } \\ \text { Equations }}$
Math 240

1. Linear differential equations of order n

Linear differential operators Familiar stuff An example
2. Homogeneous constant-coefficient linear differential equations

Introduction

We now turn our attention to solving linear differential equations of order n. The general form of such an equation is

$$
a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n-1}(x) y^{\prime}+a_{n}(x) y=F(x)
$$

where $a_{0}, a_{1}, \ldots, a_{n}$, and F are functions defined on an interval I.

The general strategy is to reformulate the above equation as

$$
L y=F
$$

where L is an appropriate linear transformation. In fact, L will be a linear differential operator.
so that

$$
D^{k}(f)=\frac{d^{k} f}{d x^{k}} .
$$

A linear differential operator of order n is a linear combination of derivative operators of order up to n,

$$
L=D^{n}+a_{1} D^{n-1}+\cdots+a_{n-1} D+a_{n}
$$

defined by

$$
L y=y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n-1} y^{\prime}+a_{n} y
$$

where the a_{i} are continous functions of $x . L$ is then a linear transformation $L: C^{n}(I) \rightarrow C^{0}(I)$. (Why?)

Higher Order
Linear

Examples

Math 240

Linear DE
Linear
differential operators Familiar stuff Example

Example

If $L=D^{2}+4 x D-3 x$, then

$$
L y=y^{\prime \prime}+4 x y^{\prime}-3 x y .
$$

We have

$$
\begin{aligned}
L(\sin x) & =-\sin x+4 x \cos x-3 x \sin x, \\
L\left(x^{2}\right) & =2+8 x^{2}-3 x^{3} .
\end{aligned}
$$

Example

If $L=D^{2}-e^{3 x} D$, determine

1. $L\left(2 x-3 e^{2 x}\right)=-12 e^{2 x}-2 e^{3 x}+6 e^{5 x}$
2. $L\left(3 \sin ^{2} x\right)=-3 e^{3 x} \sin 2 x-6 \cos 2 x$ homogeneous, otherwise it is nonhomogeneous.
Consider the general n-th order linear differential equation $a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n-1}(x) y^{\prime}+a_{n}(x) y=F(x)$, where $a_{0} \neq 0$ and $a_{0}, a_{1}, \ldots, a_{n}$, and F are functions on an interval I.

If $a_{0}(x)$ is nonzero on I, then we may divide by it and relabel, obtaining

$$
y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n-1}(x) y^{\prime}+a_{n}(x) y=F(x)
$$

which we rewrite as

$$
L y=F(x)
$$

where $L=D^{n}+a_{1} D^{n-1}+\cdots+a_{n-1} D+a_{n}$.
If $F(x)$ is identically zero on I, then the equation is

The general solution

This expression is called the general solution.

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

We can use the Wronskian

$$
W\left[y_{1}, y_{2}, \ldots, y_{n}\right](x)=\left|\begin{array}{cccc}
y_{1}(x) & y_{2}(x) & \cdots & y_{n}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x) & \cdots & y_{n}^{\prime}(x) \\
\vdots & \vdots & \ddots & \vdots \\
y_{1}^{(n-1)}(x) & y_{2}^{(n-1)}(x) & \cdots & y_{n}^{(n-1)}(x)
\end{array}\right|
$$

to determine whether a set of solutions is linearly independent.

Theorem

Let $y_{1}, y_{2}, \ldots, y_{n}$ be solutions to the n-th order differential equation $L y=0$ whose coefficients are continuous on I. If $W\left[y_{1}, y_{2}, \ldots, y_{n}\right](x)=0$ at any single point $x \in I$, then $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ is linearly dependent.
To summarize, the vanishing or nonvanishing of the Wronskian on an interval completely characterizes the linear dependence or independence of a set of solutions to $L y=0$.

The Wronskian

Example

Verify that $y_{1}(x)=\cos 2 x$ and $y_{2}(x)=3-6 \sin ^{2} x$ are solutions to the differential equation $y^{\prime \prime}+4 y=0$ on $(-\infty, \infty)$.

Determine whether they are linearly independent on this interval.

$$
\begin{aligned}
W\left[y_{1}, y_{2}\right](x) & =\left|\begin{array}{cc}
\cos 2 x & 3-6 \sin ^{2} x \\
-2 \sin 2 x & -12 \sin x \cos x
\end{array}\right| \\
& =-6 \sin 2 x \cos 2 x+6 \sin 2 x \cos 2 x=0
\end{aligned}
$$

They are linearly dependent. In fact, $3 y_{1}-y_{2}=0$.

Nonhomogeneous equations

Consider the nonhomogeneous linear differential equation $L y=F$. The associated homogeneous equation is $L y=0$.

Theorem

Suppose $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ are n linearly independent solutions to the n-th order equation $L y=0$ on an interval I, and $y=y_{p}$ is any particular solution to $L y=F$ on I. Then every solution to $L y=F$ on I is of the form

$$
\begin{aligned}
y & =\underbrace{c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}}_{y_{c}} \\
& =y_{p}, \\
& +y_{p}
\end{aligned}
$$

for appropriate constants $c_{1}, c_{2}, \ldots, c_{n}$.
This expression is the general solution to $L y=F$. The components of the general solution are

- the complementary function, y_{c}, which is the general solution to the associated homogeneous equation,
- the particular solution, y_{p}.

Something slightly new

Theorem
If $y=u_{p}$ and $y=v_{p}$ are particular solutions to $L y=f(x)$ and $L y=g(x)$, respectively, then $y=u_{p}+v_{p}$ is a solution to $L y=f(x)+g(x)$.

Proof.
We have $L\left(u_{p}+v_{p}\right)=L\left(u_{p}\right)+L\left(v_{p}\right)=f(x)+g(x)$. $\quad \mathcal{Q} . \mathcal{E} . \mathcal{D}$.

An example

Could this be a basis for the solution space? Check linear independence. Yes! The general solution is

$$
y(x)=c_{1} e^{2 x}+c_{2} e^{-3 x}
$$

An example

Example

Determine the general solution to the differential equation

$$
y^{\prime \prime}+y^{\prime}-6 y=8 e^{5 x} .
$$

We know the complementary function,

$$
y_{c}(x)=c_{1} e^{2 x}+c_{2} e^{-3 x} .
$$

For the particular solution, we might guess something of the form $y_{p}(x)=c e^{5 x}$. What should c be? We want

$$
8 e^{5 x}=y_{p}^{\prime \prime}+y_{p}^{\prime}-6 y_{p}=(25 c+5 c-6 c) e^{5 x} .
$$

Cancel $e^{5 x}$ and then solve $8=24 c$ to find $c=\frac{1}{3}$.
The general solution is

$$
y(x)=c_{1} e^{2 x}+c_{2} e^{-3 x}+\frac{1}{3} e^{5 x}
$$

Introduction

We just found solutions to the linear differential equation

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

of the form $y(x)=e^{r x}$. In fact, we found all solutions.
This technique will often work. If $y(x)=e^{r x}$ then

$$
y^{\prime}(x)=r e^{r x}, \quad y^{\prime \prime}(x)=r^{2} e^{r x}, \quad \ldots, \quad y^{(n)}(x)=r^{n} e^{r x}
$$

So if $r^{n}+a_{1} r^{n-1}+\cdots+a_{n-1} r+a_{n}=0$ then $y(x)=e^{r x}$ is a solution to the linear differential equation

$$
y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=0 .
$$

Let's develop this approach more rigorously.

The auxiliary polynomial

Consider the homogeneous linear differential equation

$$
y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=0
$$

with constant coefficients a_{i}. Expressed as a linear differential operator, the equation is $P(D) y=0$, where

$$
P(D)=D^{n}+a_{1} D^{n-1}+\cdots+a_{n-1} D+a_{n} .
$$

Definition

A linear differential operator with constant coefficients, such as $P(D)$, is called a polynomial differential operator. The polynomial

$$
P(r)=r^{n}+a_{1} r^{n-1}+\cdots+a_{n-1} r+a_{n}
$$

is called the auxiliary polynomial, and the equation $P(r)=0$ the auxiliary equation.

The auxiliary polynomial

Example

The equation $y^{\prime \prime}+y^{\prime}-6 y=0$ has auxiliary polynomial

$$
P(r)=r^{2}+r-6
$$

Examples

Give the auxiliary polynomials for the following equations.

$$
\begin{array}{ll}
\text { 1. } y^{\prime \prime}+2 y^{\prime}-3 y=0 & r^{2}+2 r-3 \\
\text { 2. }\left(D^{2}-7 D+24\right) y=0 & r^{2}-7 r+24 \\
\text { 3. } y^{\prime \prime \prime}-2 y^{\prime \prime}-4 y^{\prime}+8 y=0 & r^{3}-2 r^{2}-4 r+8
\end{array}
$$

The roots of the auxiliary polynomial will determine the solutions to the differential equation.

Polynomial differential operators commute

The key fact that will allow us to solve constant-coefficient linear differential equations is that polynomial differential operators commute.

Theorem

If $P(D)$ and $Q(D)$ are polynomial differential operators, then

$$
P(D) Q(D)=Q(D) P(D)
$$

Proof.

For our purposes, it will suffice to consider the case where P and Q are linear.

Commuting polynomial differential operators will allow us to turn a root of the auxiliary polynomial into a solution to the corresponding differential equation.

Linear polynomial differential operators

In our example,

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

with auxiliary polynomial

$$
P(r)=r^{2}+r-6,
$$

the roots of $P(r)$ are $r=2$ and $r=-3$. An equivalent statement is that $r-2$ and $r+3$ are linear factors of $P(r)$.

The functions $y_{1}(x)=e^{2 x}$ and $y_{2}(x)=e^{-3 x}$ are solutions to

$$
y_{1}^{\prime}-2 y_{1}=0 \quad \text { and } \quad y_{2}^{\prime}+3 y_{2}=0
$$

respectively.

Theorem

The general solution to the linear differential equation

$$
y^{\prime}-a y=0
$$

is $y(x)=c e^{a x}$.

Theorem
Suppose $P(D)$ and $Q(D)$ are polynomial differential operators

$$
P(D) y_{1}=0=Q(D) y_{2}
$$

If $L=P(D) Q(D)$, then

$$
L y_{1}=0=L y_{2} .
$$

Proof.

$$
\begin{gather*}
P(D) Q(D) y_{2}=P(D)\left(Q(D) y_{2}\right)=P(D) 0=0 \\
P(D) Q(D) y_{1}=Q(D) P(D) y_{1} \\
=Q(D)\left(P(D) y_{1}\right)=Q(D) 0=0
\end{gather*}
$$

Example

The theorem implies that, since

$$
(D-2) y_{1}=0 \quad \text { and } \quad(D+3) y_{2}=0
$$

the functions $y_{1}(x)=e^{2 x}$ and $y_{2}(x)=e^{-3 x}$ are solutions to

$$
y^{\prime \prime}+y^{\prime}-6 y=\left(D^{2}+D-6\right) y=(D-2)(D+3) y=0 .
$$

Higher Order

Furthermore, solutions produced from different roots of the auxiliary polynomial are independent.

Example

If $y_{1}(x)=e^{2 x}$ and $y_{2}(x)=e^{-3 x}$, then

$$
\begin{aligned}
W\left[y_{1}, y_{2}\right](x) & =\left|\begin{array}{cc}
e^{2 x} & e^{-3 x} \\
2 e^{2 x} & -3 e^{-3 x}
\end{array}\right| \\
& =e^{-x}\left|\begin{array}{cc}
1 & 1 \\
2 & -3
\end{array}\right|=-5 e^{-x} \neq 0
\end{aligned}
$$

Distinct linear factors

If we can factor the auxiliary polynomial into distinct linear factors, then the solutions from each linear factor will combine to form a fundamental set of solutions.

Example

Determine the general solution to $y^{\prime \prime}-y^{\prime}-2 y=0$.
The auxiliary polynomial is

$$
P(r)=r^{2}-r-2=(r-2)(r+1)
$$

Its roots are $r_{1}=2$ and $r_{2}=-1$. The functions $y_{1}(x)=e^{2 x}$ and $y_{2}(x)=e^{-x}$ satisfy

$$
(D-2) y_{1}=0=(D+1) y_{2} .
$$

Therefore, y_{1} and y_{2} are solutions to the original equation. Since we have 2 solutions to a $2^{\text {nd }}$ degree equation, they constitute a fundamental set of solutions; the general solution is

$$
y(x)=c_{1} e^{2 x}+c_{2} e^{-x}
$$

Multiple roots

What can go wrong with this process? The auxiliary polynomial could have a multiple root. In this case, we would get one solution from that root, but not enough to form the general solution. Fortunately, there are more.

Theorem
The differential equation $(D-r)^{m} y=0$ has the following m linearly independent solutions:

$$
e^{r x}, x e^{r x}, x^{2} e^{r x}, \ldots, x^{m-1} e^{r x}
$$

Proof.
Check it.

Multiple roots

Example

Determine the general solution to $y^{\prime \prime}+4 y^{\prime}+4 y=0$.

1. The auxiliary polynomial is $r^{2}+4 r+4$.
2. It has the multiple root $r=-2$.
3. Therefore, two linearly independent solutions are

$$
y_{1}(x)=e^{-2 x} \quad \text { and } \quad y_{2}(x)=x e^{-2 x}
$$

4. The general solution is

$$
y(x)=e^{-2 x}\left(c_{1}+c_{2} x\right)
$$

Complex roots

for $k=0,1, \ldots, m-1$.

Complex roots

Example

Determine the general solution to $y^{\prime \prime}+6 y^{\prime}+25 y=0$.

1. The auxiliary polynomial is $r^{2}+6 r+25$.
2. Its has roots $r=-3 \pm 4 i$.
3. Two independent real-valued solutions are

$$
y_{1}(x)=e^{-3 x} \cos 4 x \quad \text { and } \quad y_{2}(x)=e^{-3 x} \sin 4 x .
$$

4. The general solution is

$$
y(x)=e^{-3 x}\left(c_{1} \cos 4 x+c_{2} \sin 4 x\right)
$$

